This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS AND MASS SPECTRAL REARRANGEMENTS OF SOME NEW MIXED VINYL SULPHIDE-SULPHONES AND DISULPHONES

S. Ghouse Peeranª; Y. Vatsalaª; C. Khasim Sahebª; G. Hanumantha Reddyª a Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India

To cite this Article Peeran, S. Ghouse , Vatsala, Y. , Saheb, C. Khasim and Reddy, G. Hanumantha(1991) 'SYNTHESIS AND MASS SPECTRAL REARRANGEMENTS OF SOME NEW MIXED VINYL SULPHIDE-SULPHONES AND DISULPHONES', Phosphorus, Sulfur, and Silicon and the Related Elements, 62: 1, 181 — 187

To link to this Article: DOI: 10.1080/10426509108034474 URL: http://dx.doi.org/10.1080/10426509108034474

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND MASS SPECTRAL REARRANGEMENTS OF SOME NEW MIXED VINYL SULPHIDE-SULPHONES AND DISULPHONES

S. GHOUSE PEERAN, Y. VATSALA, C. KHASIM SAHEB and G. HANUMANTHA REDDY*

Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515 003, India

(Received April 12, 1990; in final form April 9, 1991)

Stererospecifically prepared (E)-1-chloro-2-p-chlorophenylsulphonylstilbene (1) and (Z)-1-bromo-2-p-chlorophenylsulphonylstilbene (6) on reaction with sodium alkyl thiolates in abs. ethanol underwent nucleophilic displacement of halogens leading to the formation of (E)- and (Z)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2 and (2)-1. The sulphide-sulphones (2)- and (2)-1-alkylsulphenyl-2-p-chlorophenylsulphones (3)- and (3)- Mass spectra of (2)- and (2)-isomers of 1-butylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2)- and their corresponding disulphones (2)- and (3)- and (3)

Key words: (E)-1-p-chlorophenylsulphenylstilbene; (E)-1-chloro-2-p-chlorophenylsulphonylstilbene; (Z)-1-bromo-2-p-chlorophenylsulphonylstilbene; (E)- and (Z)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes; (E)- and (Z)-1-alkylsulphonyl-2-p-chlorophenylsulphonylstilbenes.

INTRODUCTION

Bis(organo sulphonyl)ethylenes, 1,2 vinylene sulphonyl compounds³ are best known for their fungicidal activity to protect seeds. Further, activity is found to vary depending on geometry and the substituents present in the compounds. Even though some reports⁴⁻⁸ have appeared on synthesis of unsaturated sulphide-sulphones and disulphones, mass spectral characterisation data available on these compounds is very scanty. Previously we have reported^{9,10} the syntheses and mass spectral rearrangements of unsaturated bis-sulphides and bis-sulphones. Herein, we report the synthesis of some new (E)- and (Z)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2 and 7) and their corresponding disulphones (3 and 8) and mass spectral study of (E)- and (Z)-1-butylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2c and 7c) and their corresponding disulphones (3c and 8c).

DISCUSSION

(E)-1-Chloro-2-p-chlorophenylsulphonylstilbene (1),^{7,11} on reaction with sodium salt of different alkyl thiols in abs. ethanol underwent nucleophilic displacement of chlorine to furnish (E)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2) with retention of configuration^{12,13} (Scheme I). Compound 2 on oxidation with

2 and 3a:
$$R = CH_3CH_2$$

b: $R = CH_3CH_2CH_2$
c: $R = CH_3(CH_2)_2CH_2$
d: $R = (CH_3)_2CHCH_2$

SCHEME I

excess of 30% H_2O_2 afforded (E)-1-alkylsulphonyl-2-p-chlorophenylsulphonylstilbenes (3).

Similar reactions of (Z)-1-bromo-2-p-chlorophenylsulphonylstilbene (6) gave (Z)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes (7) and their corresponding disulphones (8). (Scheme II). Compound 6 is prepared by the oxidation of the product obtained by the bromination^{4,5} of (E)-1-p-chlorophenylsulphenylstilbene (4).

The UV, λ_{max} of the conjugation band for (E)-sulphide-sulphones 2 observed around 305–315 nm region and for their corresponding (Z)-isomers 7 around 298–305 nm region. The (E)-isomers of disulphones 3 exhibited the conjugation band around 246–251 nm region and the corresponding (Z)-isomers 8 around 243–245 nm region.

The IR ν_{max} for all the compounds (2, 3, 7 and 8) exhibited sharp bands around 1305–1332 and 1126–1160 (SO₂)¹³ and 1080 and 1099 cm⁻¹ (C—S)^{14,15}.

The low resolution mass spectral features of (E)- and (Z)-isomers of sulphide-sulphones (2c and 7c) are found to be almost identical and so also those of the corresponding disulphones (3c and 8c). The M^+ ion peak followed by $M^+ + 1$ and $M^+ + 2$ peaks is noticed both in sulphide-sulphones and disulphones. The

$$\begin{array}{c}
 & C_6H_5 \\
 & C_6H_5
\end{array}$$

$$e^{-C1C_6H_4SO_2}$$
 $e^{-C1C_6H_4SO_2}$
 $e^{-C1C_6H_4SO_2}$

7 and 8a:
$$R = CH_3CH_2$$

b: $R = CH_3CH_2CH_2$
c: $R = CH_3(CH_2)_2CH_2$
d: $R = (CH_3)_2CHCH_2$

SCHEME II

base peaks in sulphide-sulphones and disulphones are constituted by diphenylacetylene radical ion $(m/z 178)^{16}$ and $C_7H_5O^+$ ion (m/z 105) respectively. The fragment ion, $C_7H_5O^+$ which also constitutes a prominent peak in sulphide-sulphones is assumed to be formed via thiobenzil intermediate (m/z 226) in **2c** and **7c** and via benzil intermediate (m/z 210) in **3c** and **8c** through sulphonyl sulphinate rearrangement from M^+ ion. A proposed structure for the fragment ion at m/z 267 in **2c** and **7c** which is believed to be resulted by the loss of p-ClC₆H₄SO₂ radical from M^+ ion is shown in Scheme III. The initial ionisation of sulphide-sulphone permits the rotation of trans- into cis-geometry and hence the corresponding peak (m/z)

SCHEME III

SCHEME IV

267) is seen in *trans*-isomer also. A conspicuous peak at m/z 211 is assumed to be due to the ion formed from fragment ion (m/z 267), undergoing McLafferty rearrangement. This ion (m/z 267) is further believed to be cleaved to afford a fragment ion at m/z 210 by the expulsion of $CH_3(CH_2)_2CH_2$ radical. Smiles type rearrange-

ment,¹⁶ furnishing aryl alkyl sulphide radical ion at m/z 200 is noticed in **2c** and **7c** (Scheme IV). This is totally absent in **3c** and **8c** and explained as being due to the higher oxidation state of sulphur which has no lone pair of electrons to initiate the rearrangement to occur. An interesting feature observed in both sulphide-sulphones and disulphones is the presence of McLafferty type rearrangement,¹⁷ involving migration of hydrogen from aryl group in **2c** and **7c** and from alkyl and aryl groups in **3c** and **8c**, to the ethylenic carbon via a six membered transition state. This is shown in Schemes V and VI respectively. The well known sulphonyl-sulphinate rearrangement¹⁸ with subsequent cleavages furnishing *p*-ClC₆H₄SO⁺ or CH₃(CH₂)₂CH₂SO⁺ and/or *p*-ClC₆H₄S⁺ or CH₃(CH₂)₂CH₂S⁺ as the case may be, in both sulphide-sulphones and disulphones. Vinyl migration¹⁰ is the predominant pathway, with no evidence of *p*-ClC₆H₄O⁺ or CH₃(CH₂)₂CH₂O⁺ to indicate an aryl or alkyl migration.

SCHEME V

SCHEME VI

m/z 290(42)

EXPERIMENTAL

The melting points were determined on a Mel Temp apparatus and are uncorrected. UV spectra were recorded in 95% EtOH on a Beckman Model DU-2 UV spectrophotometer (λ_{max} in nm) and IR spectra in KBr pellets on a Perkin Elmer IR spectrophotometer 983 G (ν_{max} in cm⁻¹).

Diphenylacetylene, p-chlorophenylsulphenylchloride, p (E)-1-chloro-2-p-chlorophenylsulphonylstilbene (p) were prepared as described.

- (Z)-1-Bromo-2-p-chlorophenylsulphenylstilbene (5). To well stirred solution of (E)-1-p-chlorophenylsulphenylstilbene (4) (12 g, 0.03 mol) in gl. acetic acid (200 ml), a solution of bromine (2.4 g, 0.03 mol) in gl. acetic acid (25 ml) was added dropwisely. The addition took about 15 min and stirring was continued for 1 hr. The precipitated solid was filtered to yield 11 g (87.6%) and recrystallised thrice from methanol to afford 5 as light yellow crystals, m.p. 171–72° (Found: C, 59.63; H, 3.40. Calcd. for $C_{20}H_{14}ClBrS$: C, 59.85; H, 3.49%). UV: 322 (ε 6,998), 268 (15,081), 227 (26,000), 202 (40,111); IR: 1080m (S-aryl) and 1650w cm⁻¹ (C=C).
- (*Z*)-*1-Bromo-2-p-chlorophenylsulphonylstilbene* (6). To a boiling solution of 5 (2.0 g, 0.005 mol) in gl. acetic acid (30 ml), 30% $\rm H_2O_2$ (10 ml) was added and resultant mixture was refluxed for 1 hr. The product separated on cooling, was filtered to yield 1.8 g (83.8%) and recrystallisation of which afforded 6 as colourless needle shaped crystals, m.p. 136–37° (Found: C, 55.63; H, 3.27; Calcd. for $\rm C_{20}H_{14}ClBrO_2S$: C, 55.43; H, 3.23%); UV: 269 (ϵ 15,547), 210 (38,983); IR: 1092s (S-aryl), 1132s (SO₂), 1317s (SO₂) and 1648w cm⁻¹ ($\rm C$ =C).
- (E)- And (Z)-1-alkylsulphenyl-2-p-chlorophenylsulphonylstilbenes (2 and 7): General Method. To a solution of sodium ethoxide prepared by dissolving sodium (230 mg, 0.01 mol) in abs. ethanol (25 ml), an appropriate alkane thiol (0.01 mol) was added. The resulting sodium thiolate was mixed with a solution of 1 or 5 (0.01 mol) in abs. ethanol (30 ml) and heated at reflux for 5-7 hr in different cases. The solid 2 or 7 separated on cooling was filtered and recrystallised from an appropriate solvent (Table I).
- (E)- And (Z)-1-alkylsulphonyl-2-p-chlorophenylsulphonylstilbenes (3 and 8): General Method. A boiling solution of 2 or 7 (0.005 mol) in gl. acetic acid was treated with 30% $\rm H_2O_2$ (10 ml) and the reaction mixture heated at reflux for 1 hr. The solid 3 or 8 separated on cooling was collected and recrystallised from an appropriate solvent (Table I).

ACKNOWLEDGEMENTS

It gives a great pleasure to authors to acknowledge the CSIR, New Delhi for extending financial assistance to one of them (GHR) and to authorities of RSIC, IIT, Madras, India for mass spectral recordings.

REFERENCES

- 1. Chemagro Corp. Brit. Pat. 896,373 (1962), Chem. Abstr., 37, 13615b (1962).
- 2. M. S. Raasch, U.S. Pat. 2979435 (1961), Chem. Abstr., 55, 20316h (1961).
- 3. M. S. Raasch, U.S. Pat. 2893911 (1959), Chem. Abstr., 54, (1960).
- 4. L. Benati, M. Tiecco and A. Tundo, Bull. Sci. Fac. Chem. Ind. Bologna, 21, 177 (1963).
- 5. M. S. R. Naidu and S. G. Peeran, Tetrahedron, 31, 465 (1975).
- 6. M. S. R. Naidu, S. G. Peeran and D. B. Reddy, Indian J. Chem., 16B, 1090 (1978).
- 7. M. S. R. Naidu and R. Prabhakara, J. Indian Chem. Soc., LXIV, 108 (1987).
- 8. S. Ghouse Peeran, T. Hidayathulla Khan and R. Venkateswarlu, Indian J. Chem., 21B, 579 (1982).
- 9. S. G. Peeran and G. Hanumantha Reddy, *Phosphorous Sulfur and Silicon*, **54**, 9 (1990).
- 10. S. G. Peeran, Y. Sujatha and G. Hanumantha Reddy, Sulfur Letters, 11(1-2), 47 (1990).
- 11. L. DiNunno, G. Melloni, G. Modena and G. Scorrano, Terahedron Lett., 4405 (1965).
- 12. F. Montanari, Gazz. Chim. Ital., 86, 228, 406, 735, 747 (1956).
- 13. G. Modena and P. E. Todesco, Gazz. Chim. Ital., 89, 866 (1959).
- 14. S. G. Peeran, R. Venkateswarlu and G. Hanumantha Reddy, *Indian J. Chem.*, 28, 223 (1989).

- 15. N. S. Ham, A. N. Hambly and R. H. Laby, Australian J. Chem., 13, 443 (1960).

- C. J. Hill, B. S. Thyagarajan, D. K. Bates and R. J. Spangler, Org. Mass Spectrom, 12, 379 (1977).
 L. K. Liu and C. T. Hong, Org. Mass Spectrom, 13, 675 (1978).
 H. Budzikiewicz, C. Djerassi and D. H. Williams, "Mass Spectrometry of Organic Compounds", Holden-Day, San Francisco, pp 552–599 (1967).
 19. D. Lawson and N. Kharasch, *J. Org. Chem.*, **24**, 858 (1959).